
Presented by
Paul Curzon
and Peter McOwan
Queen Mary University of London

A Computer Science for
Fun / Teaching London
Computing Special

The Magic
of Computer
Science III
Magic meets mistakes,
machines and medicine

Contents

The Magic of Machines
Saving Lives

The Acrobatic Eights

Invisible Palming

Between the Two Red
Queens

Ninja Countdown

The Magical Friendship Test

03

26

04

32

10

14

2 Queen Mary University of London Learn more at www.cs4fn.org/magic/

The Magic of Machines
Saving Lives

Magic, Medicine and
Computational Thinking
Expert programmers are often called wizards.
They use their skills to work magic in
creating computer programs that do all the
amazing things computers do. It turns out,
programmers really do use a lot of the same
skills as magicians: computational thinking
skills. When those computers are designed to
help medics in hospitals, it’s about the magic
of saving lives.

This book contains magic tricks showing you
what computational thinking is all about. Along
the way we will also see how mathematics,
psychology, design and the social sciences
matter to both magicians and computer
scientists, and so ultimately to medicine too.

Keep the magician’s code
Some of these effects are in the shows of
professional magicians. We present them here
for educational and entertainment purposes.
If you perform them for friends don’t break the
magicians’ code. Practice the tricks first and
never reveal the secrets.

Queen Mary University of London 3Learn more at www.cs4fn.org/magic/

Invisible
Palming

The mechanics
Take 15 similar looking cards from a shuffled
pack – all black, no royalty or Aces. Have a
volunteer put their hands with fingers and
thumbs touching the table as though playing
the piano. Explain that everyone must chant
the magic words: “Two cards make a pair”.

Take two cards and as everyone says “Two
cards make a pair” place them together
between a pair of fingers. Keep doing this until
you have one card left. Place it between the
final fingers saying there is “one left over”.

Now take the first pair back, again all chanting
“Two cards make a pair”. Place them face
down on the table to start two piles. Do this
with each pair: saying the magic words and
adding one card neatly to each pile. Eventually
only the last single card is left. Take this card
saying: “We have one extra card.” Let them
place it on top of one of the piles. Square up
the piles pointing out: “So that pile now has
the extra card”.

Explain that you are going to do ‘Invisible
Palming’. The extra card is on one pile. You
are going to invisibly move it to the other. Place
your hand over the pile with the extra card.
Rub the back of your hand to “make the card
go invisible”. Lift your palm showing that the
card you are pretending to move is invisible.
Move your hand to the other pile. Tap it, “to
make the card drop”. Announce that the card
has now moved piles. (In fact you did nothing
at all!)

To show the magic worked, take the pile where
the extra card was placed and count off pairs
into a new single face down pile – “Two cards
make a pair. Two cards make a pair…”. This
pile must be neat so no one counts the cards.
You find there are only pairs – the extra card
has disappeared! So where has it gone? Take
the other pile and do the same, putting pairs
back into a pile. Amazingly the extra card is
there. Exclaim that the extra card really has
moved from one pile to the other!

Now tell the volunteer that they can do the
trick. Put your hands out in the piano position
and talk them through the steps. To their
surprise they manage to move the card,
even though they don’t know how.

How it works
Magicians call this a self-working trick. It
always works if you follow the steps. It appears
magical because you have confused everyone.
They believe when they add the last card to
a pile they are adding an extra odd card. You
are actually making up the last pair – making
an odd pile even. There are 15 cards. After
dealing out the pairs there are 7 cards in both
piles. The last card makes its pile up to 8
cards – 4 pairs. When you count out the pairs
there will be only pairs there, so no ‘extra’ card.
The other pile will be left with 7 cards: 3 pairs
with one left over. You pretend it has magically
moved without doing anything. Nothing has to
move!

Queen Mary University of London 5Learn more at www.cs4fn.org/magic/

Invisible Palming: Magic
You invisibly move a card from one pile to another.
A volunteer can do it too, even though they have no
idea how.

Invisible Palming:
Computational Thinking

Algorithms and Magic
What does this have to do with computing?
Well, Computer scientists call self-working
tricks algorithms. An algorithm is a series of
instructions that if followed exactly and in the
right order lead to a guaranteed effect. The
instructions have to be precise and cover
all eventualities. For example, this trick has
to work however the cards are shuffled and
wherever the extra card is placed.

The Invisible Palming
Algorithm
Here it is written out as a series of steps.

To do Invisible Palming:

1) �A volunteer places their hands as though
playing the piano.

2) Do the following 7 times.

	 a. �Place 2 cards between two of the
volunteer’s fingers.

	 b. Say “Two cards make a pair”.

3) �Place a single card between the remaining
finger and thumb.

4) Do the following 7 times.

	 a. �Take a pair from the fingers and split
them in two piles.

	 b. Say “Two cards make a pair”.

5) �Ask the volunteer to place the last card
on a pile of their choice.

6) �Place your hand over that pile, rubbing the
back of your hand.

7) �Lift your hand, show the palm then place it
over the other pile.

8) �Tap your hand and remove it,
saying the card has moved.

9) Pick up the first pile.

10) Do the following 4 times.

	 a. �Add 2 cards from the pile you are
holding to a pile on the table.

	 b. Say “Two cards make a pair”.

11) Pick up the second pile

12) Do the following 3 times.

	 a. �Add 2 cards from the pile you are
holding to a pile on the table.

	 b. Say “Two cards make a pair”.

13) �Reveal that the extra card is now in the
second pile.

6 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Invisible Palming:
Computational Thinking

Queen Mary University of London 7Learn more at www.cs4fn.org/magic/

Deviously Decomposing
To do the trick we start at the first instruction
and work through them in turn. Magic tricks
have to be written in enough detail that a
budding magician can follow the instructions
and get the magical effect.

That is the point of algorithms. Once you have
an algorithm that works, you don’t have to think
about it any more. You don’t have to solve the
problem of how to get the effect. You just blindly
follow the algorithm and it will happen. The
trick shows this. The volunteer following your
instructions gets the magical effect even though
they have no idea how it works.

The detail matters. Just saying we should
pretend to move a card from one pile to the
other isn’t good enough. We need to say how to
do it. However, we can split a trick into separate
parts. Spinning off separate algorithms to do
smaller parts of the task makes it all easier to
understand, while still giving all the detail. It’s
called Decomposition.

The Trick Decomposed
Here is a new description of the trick using
decomposition. We give all the detail for each
step. Each is an algorithm of its own.

To do Invisible Palming:
1. Deal out 15 cards in pairs with one left over.
2. �Take the pairs back splitting them into

two piles.
3. �Have a volunteer choose where to put the

extra card.
4. �Pretend to move a card between piles
5. �Reveal that the extra card has magically

moved piles.

To deal out 15 cards in pairs with one left over:
1. �A volunteer places their hands as though

playing the piano.
2. Do the following 7 times
	 a. �Place 2 cards between two of the

volunteer’s fingers.
	 b. Say “Two cards make a pair”
3. �Place a single card between the remaining

finger and thumb.

To take the pairs back splitting them into
two piles:
1. Do the following 7 times
	 a. �Take a pair from the fingers and split

them in two piles
	 b. Say “Two cards make a pair”

To pretend to move a card between piles:
1. �Place hand over pile with last card rubbing

the back of the hand
2. �Lift your hand, showing the palm

and placing it over the other pile.
3. �Tap your hand and remove it, saying

the card has moved.

To reveal that the extra card has magically
moved piles:
1. Pick up the first pile.
2. Put 4 pairs down
3. Pick up the second pile
4. Put 3 pairs down
5. �Reveal that the extra card is now in the

second pile

To put n pairs down:
1. Do the following n times.
	 a. �Add 2 cards from the pile you are holding,

to a pile on the table.
	 b. Say “Two cards make a pair”.

Invisible Palming:
Computational Thinking

Algorithmic Thinking
Computer programs are algorithms too.
Computers work by following the instructions
written by programmers. Magic tricks are
written in English so a human can follow
them, programs are written in a programming
language so a machine can follow them blindly.

Programs contain similar structures to our
magic trick’s description. They are a sequence
of instructions to be done in order. They have
instructions that say other instructions are
to be repeated (loops). They are split into
separate named parts (procedures), each an
algorithm for a simpler task. To a computer
scientist:

To Deal out 15 cards in pairs with one left over:
is a procedure. Some procedures need to
be given information to do their job (called
parameters). For our trick n was a parameter in
the procedure “Put n pairs down”. This allows
it to be used both to explain how to put 4 pairs
down (with n as 4), then again to put 3 pairs
down (with n as 3). One procedure does both
jobs.

A magician who invents new tricks is creating
algorithms. A programmer writing a program
is doing the same. They are both using their
computational thinking skills and especially
algorithmic thinking. It involves working out a
series of steps that will always have the effect
you are after. Algorithmic thinking also involves
writing instructions really clearly and precisely
so that there is no confusion about what to do.

Programmers really are wizards!

8 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Invisible Palming: Medicine

Algorithms in Hospitals
Sarah is very ill in hospital intensive care.
To get better she needs a constant supply of
medicine. A computer gives it to her. A syringe
full of the drug has tubes that go into the veins
in her arm. The computer controls a pump that
pushes the syringe, gradually giving her the
medicine she needs.

An algorithm is making Sarah better. A
programmer wrote the instructions telling
the computer how to control the pump. It is
following an algorithm just like a magician
following the steps of a trick. The algorithm first
allows the nurse to enter the amount of drug to
be given. It then waits until the nurse presses
the start button. Then it switches on the pump
at the right speed to deliver the right amount of

drug. Finally, it stops the pump when the total
dose had been delivered, having calculated
the time the pump should run for. It deals with
lots of other things too – presenting suitable
information on the screen, sounding alarms if
the tubes get blocked, and so on.

Hospitals are full of computers disguised as
medical devices. They monitor patients, run
tests to help work out what is wrong, and
give treatments, from medicines to radiation
therapy. They even help with surgery. All are
following algorithms written by computer
scientists.

It is not only Doctors and Nurses keeping
patients alive. The engineers who design the
machines and the computer scientists who
program them do too. They all work together.

Learn more at www.cs4fn.org/magic/ Queen Mary University of London 9

Ninja
Countdown

Ninja Countdown: Magic
You make two piles of cards that a volunteer
quickly covers with their hands. Somehow you
still move a card from one pile to another.

The mechanics
This trick has the same ultimate effect as
Invisible Palming. You appear to move a card
from one pile to another. It has completely
different mechanics though.

Take 12 cards from a normal pack and count
them on to the table face down. Note there
are 12 cards. Then count them again just to
double-check, but counting down this time 12,
11, 10, 9, etc.

Explain you are going to split them into two
piles, then use your Ninja powers to move
a card from one pile to the other. As you
are lightning quick, when you get to 6 your
volunteer should slam their hand on the pile
as quickly as they can. They must beat you,
as you will be trying to take a card. Count cards
on to the table starting from 12 till you get to
6 (“8,7,6 in that pile”) and let them slam their
hand down. Then say “and the other 6 go in
a second pile. Slam your hand on them too as
soon as I put them down”.

Say they were too fast so instead you will need
to do it using your lightning fast ninja powers
despite their hand being there. Have some fun
pretending to remove a card from the second
pile adding it to the first.

Remind them that there were 12 cards and
you counted 6 cards in to the first pile and 6 in
to the second. Tell them to remove their hands
and count each pile. They find there are now
only 5 cards in one pile, but 7 in the other. You
moved a card with your amazing Ninja skills.

How it works
This trick again works by confusing people
into thinking a card has moved when it was
in the ‘new’ pile from the start. Here people
get confused about counting down. When you
count the cards, first counting up and then
counting down, you are showing that counting
down works the same as counting up. But
actually it doesn’t unless you count all the way
to 1. When you count out the first pile and
stop at the halfway number (here 6) you have
actually counted one more than 6. Counting
12, 11, 10, 9, 8, 7, 6 gives you 7 cards in
that pile not 6! So in plain sight you have just
counted an extra card onto that pile, leaving
one less on the other pile.

Learn more at www.cs4fn.org/magic/ Queen Mary University of London 11

Ninja Countdown: Design

Entering Numbers
Tricks like this show that anyone can be
confused over numbers even over simple
things like counting backwards. Numbers are
everywhere. We enter them to set alarm clocks,
microwaves and the central heating, to get
money, use a credit card and set the house
alarm. Not getting confused over numbers
matters.

In a hospital numbers are entered in to
machines all the time: volumes, times, rates,
weights, ages, patient IDs and more. Doctors
and nurses can’t afford to get confused. We
are easily confused by small differences to
what we are used to, and yet different wards
often have different machines to do the same
thing. Different models expect numbers to be
entered in different ways, by pressing different
sequences of buttons, for example, even on
otherwise identical looking devices. Each
manufacturer has its own way of doing things.
Often the manuals assume it is obvious how to
enter a number, or say misleading things like
“numbers are entered just like on a calculator”
when different calculators have different ways
of entering numbers. Even something as simple
as the layout of keys changes – compare
mobile phones with calculators and other
gadgets. A nurse who enters numbers all the
time in one ward has to be extra careful when
using machines somewhere else. Developing
clear and accurate instruction manuals is a
really important part of developing software,
but better still the designs need to help.

12 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Queen Mary University of London 13

Ninja Countdown: Design

Standard practice
One solution is standardisation. Rather than
having a manufacturer free-for-all, we set up
prescribed ways of doing things – Standards –
with regulators to check they are followed.

Standards make all our lives easier. They tell
us how to refer to different currencies, ensure
food labelling is consistent and make sure
plugs of all electronic gadgets fit any socket,
for example. In the long run standards are
better for everyone including manufacturers.

Standardisation fits well with the computational
thinking idea of generalisation. Once a
computer scientist has solved a problem
they try and make their solution as general
as possible and package it up so it can be
used for lots of other problems too. Rather
than reinventing new solutions you can then
just take a ready packaged one you prepared
earlier. Standardisation is doing a similar thing.

Confused connections
Before you standardise though you need to
know the best way of doing things. You need
a good design to standardise! It’s not always
simple. For example, it might seem sensible to
standardise all the connectors that connect the
hospital tubing used to pump fluids into people
– blood, drugs, nutrients and so on. If they are
all the same then they will be easy to set up
for a new patient. However, that would lead to
accidents due to mix-ups. You don’t want to
accidentally connect the tubes into someone’s
spine that should deliver the drug into their
arm. By designing different connectors you can
make it impossible to get it wrong: by design.
Standards can be about standardising good
differences as well as about making things the
same.

Standards are still lacking for entering numbers
on medical devices. In medical situations it
really matters so researchers are now working
on the best ways to do it, so that in future it will
be easier for nurses. Good design can, as we
will see, help make sure nurses don’t enter the
wrong numbers and help them notice when
they do.

Learn more at www.cs4fn.org/magic/

The Magical
Friendship
Test

The Magical Friendship Test: Magic
This magical test checks if two people will be friends
for life. Each picks a card in secret. One does a magical
calculation and writes the answer for all to see.
Amazingly, when the two chosen cards are revealed
they give the same number.

The mechanics
Pick a pair of friends from the audience. Give
the Ace to 9 of Hearts to one and those of
Spades to the other. Ask each to shuffle their
cards, pick a card without seeing it and put it
face down on the table. You need to see the
chosen Spade. To do this get them to each
look at the card they chose and remember
it. Stand with the Spade person and helpfully
show what you want them to do next by
gathering up the face down spades from the
table into a loose pile in your hands. Get them
to return the chosen spade to the bottom of
this pile, square up the cards by rotating them
with both hands to tidy the pack and push all
cards in. Distract them by asking the other
person to do the same. As you do this tilt the
pack up slightly and catch a glimpse of the
bottom card. Hand the spades back. Place
both piles face down side-by-side on the table,
chosen cards at the bottom.

Friendship Compatibility
Number
Next talk the person with the Hearts (whose
card you didn’t see) through calculating
the pair’s ‘Magical Friendship Compatibility

Number’. Suppose the first person picked
the 3 of Hearts (though you don’t know

this) and you saw that the other
person had the 8 of Spades.

On a piece of paper they do the following
calculation:

Double the number they chose. (3 x 2 = 6)

Add 2 to the result. (6 + 2 = 8)

Multiply the total by 5. (8 x 5 = 40)

Subtract a magic number you give them: 2.
(40 - 2 = 38)

Finally they write the result, here 38, for all
to see.

You point out that the closer the result is to
their chosen cards the more compatible they
are. The cards were picked randomly. No one
saw both, so no one knew what number they
would make. Turn over the two piles revealing
the chosen cards, and place them side by side,
Heart (3) then Spade (8). They magically give
exactly the same 2-digit number (38) as was
written down! The test has shown the pair will
be friends for life...

Making it work
It worked with those cards, but how do we
make it always work? The trick is in the last
magic number subtracted. It should always be
the spade’s value you saw subtracted from 10.
We saw the 8 of Spades, so worked out 10 - 8
= 2. So that time 2 was the magic number. If
they had picked the Ace then you do 10 - 1 =
9 in your head and 9 is the magic number you
tell them to subtract. Calculate the right magic
number like this and it always works.

Queen Mary University of London 15Learn more at www.cs4fn.org/magic/

The Magical Friendship Test:
Computational Thinking

A Book of Runes
So we’ve got a new trick. Better write it down
before we forget it. Let’s devise a magical
notation to do it – Runes.

Name it!
First we need to give names to the different
numbers like those written down, and on
chosen cards. We need names for the chosen
Heart and Spade cards. Let’s call them heart
and spade. We need another for the “magic
number” we calculate from the Spade. Let’s
call that magic. Next we need names for the
different totals as the volunteer works through
the calculation: total1, total2, total3 and
then friends for the ‘friendship’ number that
everyone sees. Finally, we need the number
revealed by putting the two chosen cards
together. Let’s call that reveal.

Runic Commands
We also need a way to write down what
calculations need to be done and in what
order. We will use a runic arrow: <~ to mean
link the result of a calculation with a name.
The & symbol will be runic punctuation for the
start and end of an instruction. For example,
the instruction saying how to get the magic
number is:

& magic <~ 10 - spade &

It just means, subtract the number on the
Spade card from 10 and name the answer
magic. We could add instructions for what the
Magician says too but let’s stick to calculations
for now to keep it simple.

Choose me!
We need a runic command for choosing cards.
Let’s invent a command CHOOSETH that is
followed by the numbers to choose from. It
says randomly choose a value. The value is
given a name using <~ as before. We do that
twice before calculating the magic number:

& spade <~CHOOSETH{1,2,3,4,5,6,7,8,9}&

& heart <~CHOOSETH{1,2,3,4,5,6,7,8,9}&

The next calculation is to take the number
on the Heart card and double it, naming the
answer, total1 i.e., write it on the first line of
the paper. We will use x to mean multiply.

& total1 <~ heart x 2 &

Next we take total1, add 2 to it and write
the new number down on the next line, which
we call total2. Then we multiply the number
total2 by 5 to give total3. Lastly, we
subtract the magic number from total3, to
get the final friendship number we call friends.

& total2 <~ total1 + 2 &

& total3 <~ total2 x 5 &

& friends <~ total3 - magic &

16 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Queen Mary University of London 17Learn more at www.cs4fn.org/magic/

The Magical Friendship Test:
Computational Thinking

Reveal the truth
We need to reveal the 2-digit number given by
putting the chosen cards side by side. We will
use ^ to mean do that, so for example 5 ^ 4 is
54 and 10 ^ 12 is 1012. We had 3 ^ 8 which
became 38. We call the resulting number
reveal.

& reveal <~ heart ^ spade &

The last step involves checking that reveal
and friends are identical and if so say that
they will be friends forever. Let’s have a new
kind of runic command for this, EQUALETH,
that checks if two things are the same. To show
it is a test we will put it in runic curly brackets.
We want to check if reveal and friends are the
same so our test is:

{ reveal EQUALETH friends }

We want to take an action based on the test.
If (and only if) the two numbers are equal, we
want to say that they will be friends for life.
Let’s just treat speaking like writing numbers.
We will use the same symbols, but have
a special name. Let’s carry on being a bit
Shakespearian and use SPEAKETH as the
name of information to be spoken.

If a disaster occurs and the trick goes wrong
we will need to say something, perhaps saying
they will fall out instead. We hope it will always
work and we will never say that but it’s always
good to deal with things going wrong.

Back to our instructions. Let’s use the words
IF, THEN and OTH’RWISE to combine a
test with the two things to do depending on
whether the test is true or false. For our trick
we write:

& IF { reveal EQUALETH friends }

THEN

& SPEAKETH <~
 “Your friendship will last for ever” &

OTH’RWISE

& SPEAKETH <~
 “Oh no, you are soon to fall out” &

Putting everything in the right order, we get our
full rune (see box). Anytime we want to do the
trick we consult the rune.

TO DOETH: The Friendship Test:

& spade <~CHOOSETH{1,2,3,4,5,6,7,8,9}&

& heart <~CHOOSETH{1,2,3,4,5,6,7,8,9}&

& magic <~10 - spade &

& total1 <~heart x 2 &

& total2 <~total1 + 2 &

& total3 <~total2 x 5 &

& friends <~total3 - magic &

& reveal <~heart ^ spade &

& IF {reveal EQUALETH friends}

THEN

& SPEAKETH <~
 “Your friendship will last for ever” &

OTH’RWISE

& SPEAKETH <~
 “Oh no, you are soon to fall out” &

&

The Magical Friendship Test:
Computational Thinking

Magic, Runes
and Programs
Our rune tells the Magician what calculations
to do, what to do with the answers and
crucially, the order to do them in. It does it in
a very precise language. Guess what! We just
invented a programming language and wrote
a program. That is all code is, instructions
(so algorithms) written in a precise language
(a programming language), where every
statement has a very precise meaning.

Each basic instruction is an assignment: it does
a calculation then names the answer. It assigns
a number to a variable. A variable is just a
name that refers to a value. More generally,
variables are places where numbers are stored
that will be needed later. In our rune the places
are the paper, the cards and in our heads.
When a computer executes a program the
variables are storage places in its memory.

Languages for good
The invention of programming languages was
massively important. Originally, computers
were programmed by writing long lists of
numbers. Each number was an instruction.
Writing programs like this was really hard to
get right. Eventually, along came high-level
languages like our runic language, where each
instruction was a big step using English like
words. It’s languages like this that has allowed
really big programs to be written. Think back to
all those machines in hospitals. Their programs
contain perhaps millions of instructions.
Programs that big just cannot be written
without high-level programming languages.

Without them doctors and nurses would be
keeping people alive without computers to
help.

When things go wrong
As with magic, when writing programs you
must plan what the program should do if
things go wrong as well as when they go right.
We expect our trick to always work, but we
still included an instruction of what to do if it
doesn’t. It might go wrong because there is
something wrong with the trick – perhaps it
doesn’t always work. It might also go wrong
because of people doing the wrong thing. In
our trick the volunteer might get the calculation
wrong. Our instructions cover that. If you are
writing a program for a medical device making
sure the program can cope when things don’t
go as expected matters a lot. Nurses often
have to do calculations of drug doses before
entering numbers. They will sometimes make
mistakes and the programs need to help spot
them and do sensible things. As a programmer,
you must make sure your program ALWAYS
does something safe and sensible.

18 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Queen Mary University of London 19Learn more at www.cs4fn.org/magic/

The Magical Friendship Test:
Computational Thinking

Testing Times
Human mistakes aside, it would be nice to be
sure our trick always works. After all it would
be embarrassingly un-magical to announce
that the friends will fall out. Even if we can
rescue the trick, we don’t want to have to.
Evaluating algorithms is a core part
of computational thinking.

We could just do the trick a few times.
Programmers call this testing and it’s very
important. But how many times do you need
to test a magic trick to be sure it always works?
How much testing would you do before you
would do it in front of a live audience? Once?
Hundreds of times? What if it works most
times, but fails if certain numbers are chosen?
We must check every possibility. We can work
out how many with a bit of maths. There are
9 spades and 9 hearts. Any pair could come
up, so we have to check every heart with
every spade. That is 9 hearts to test for every
spade chosen, so 9 x 9 possibilities or 81
tests in total. We must calculate 81 friendship
numbers to be sure!

Hospital Tests
The same problem arises with programs. When
a computer crashes, you’ve found a situation
the programmers didn’t test for. Programs are
much more complicated than magic. Think
about those in hospitals again. The nurse
might have to enter a volume of drug like 28.8
mL and a rate (how quickly the drug should be
given) like 1.2 mL per hour. There aren’t just 9

possibilities for each number. If numbers up to
999 with one decimal place are allowed there
are 10000. That would be 10000 x 10000 or
100 million possibilities. All those combinations
can’t be checked. It is worse than that. Other
things have to be entered too (like units) –
more combinations each time. Perhaps the
program only goes wrong for certain doses
when using certain units.

It’s impossible to test all the combinations, so
programmers don’t. They use logical thinking
to devise a set of values (a test plan) they hope
will catch any problem, and test those. Even
so, programmers spend more time testing their
programs than actually writing code.

Test plans
What kind of test plan might we come up
with for our magic trick? We might test some
‘typical’ i.e., middle values like 4 and 5 and
3 and 6. We might also then choose some
extreme values like 9 and 9 then 1 and 1.
From sad experience programmers know that
things often go wrong with numbers round the
edges. Being more inventive, we might add
to our test plan 2 and 2 in case something
could go wrong if the values were the same.
We would test all those values and perhaps
some more too until we ran out of time (the
audience are waiting!). Then we would just
hope. Programmers do that too: stop testing
when the deadline for delivering the program
arises and just hope!

There must be a better way!

The Magical Friendship Test:
Maths

We also want the presentation to be right.
We want at the end:

SPEAKETH = “Your friendship will last
for ever”

It would be sad if our instructions got the
calculation right, then told us to say the wrong
thing!

But what does it mean?
The next step is to give our language a
mathematical meaning. It’s a way programming
languages and human ones differ. If we give
instructions in English, it’s easy for another
person to get the wrong idea and do the wrong
thing. We can’t let that happen with programs,
so we use maths.

We need to define mathematically (i.e.,
precisely) what each part of a program means.
Numbers are easy – they just stand for the
number themselves. What about variables?
They stand for the last number that was
linked to them (by an assignment). Arithmetic
symbols mean do that calculation on the
numbers. So if 4 was the last thing assigned
to spade then (10 - spade) stands for the
number 6.

An assignment like:

a <~ c

means set the variable a to be the answer to
the calculation, c. After it happens we know
the fact: a = c.

The Maths of Magic
There is a better way for finding mistakes in
programs. When people’s lives are at stake
it is important that programmers use it. We
need some school maths – algebra. You aren’t
made to learn it at school just for fun! It gives
computer scientists a valuable computational
thinking tool to help save lives.

The words algebra and algorithm are both
linked to the great 9th century Muslim
scholar Al-Khwarizmi. Algebra gets its name
from the Arabic word meaning ‘reunion
of broken parts’ from his book about it.
Algorithm is a variation of his name from
his book of Indian numeric algorithms.

The first step is to say what our magic
trick is supposed to do: we need to give its
requirements. We need to do this using Maths
rather than English so that we are precise
about what we mean. We call this writing a
formal specification.

It’s fairly simple for our rune. There are two
parts: 1) saying what the algorithm is supposed
to calculate and 2) saying what the audience
is told. For our rune, after we have done all the
calculations we want the following to be true:

reveal = friends

We want the number given by the chosen
cards and the number calculated to be
identical.

20 Queen Mary University of London Learn more at www.cs4fn.org/magic/

The Magical Friendship Test:
Maths

Proving Magic Works
Let’s prove the trick program works. Our first
assignment was

& spade <~CHOOSETH{1,2,3,4,5,6,7,8,9}&

CHOOSETH picks one of the numbers in its list
at random. We can’t say which number as it
will be different every time. Let’s just call it s.
Given our rule about how assignment works,
after the above command we will know that:

spade = s

Actually we know more. We also know the
number that CHOOSETH gives is one of the
numbers in its list, here 1 to 9. So we can say
the following will become true:

(spade = s) AND (s ≥ 1) AND (s ≤ 9)

We are using AND to mean a very precise
mathematical operation. The logical statement
a AND b is true when both a is true and b is
true. It is false if either a or b are false.

In the next step the second friend picks
a heart, which we will call h. After that
assignment we know the following is true.

(spade = s) AND (heart = h) AND

(h ≥ 1) AND (h ≤ 9) AND (s ≥ 1) AND (s ≤ 9)

Queen Mary University of London 21Learn more at www.cs4fn.org/magic/

The Magical Friendship Test:
Maths

What effect does the next
step of our trick have?
& magic <~ 10 - spade &

This says to work out what 10 - spade is
and make magic equal to that value. So
immediately after it has executed we know
a new fact that is true:

magic = 10 - spade

Our description of what we are sure about the
world becomes

(spade = s) AND (heart = h) AND

(magic = 10 – spade) AND

(h ≥ 1) AND (h ≤ 9) AND (s ≥ 1) AND (s ≤ 9)

That is the state of the world when we do the
next step of the trick

& total1 <~ heart x 2 &

It sets total1 to be equal to the result of the
calculation: heart x 2

This gives us a new fact to add:

(spade = s) AND (heart = h) AND

(magic = 10 – spade) AND

(total1 = heart x 2) AND

(h ≥ 1) AND (h ≤ 9) AND (s ≥ 1) AND (s ≤ 9)

Though this looks similar to our rune, it was
a program giving instructions of things to do
in order in a programming language. This
is saying what the result of following those
instructions is in logic. It is a series
of mathematical equations.

22 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Queen Mary University of London 23Learn more at www.cs4fn.org/magic/

The Magical Friendship Test:
Maths

Solving the Trick
If we keep going, we get a logical statement of
what is true once all the assignments are done:

(spade = s) AND (heart = h) AND

(magic = 10 – spade) AND

(total1 = heart x 2) AND

(total2 = total1 + 2) AND

(total3 = total2 x 5) AND

(friends = total3 – magic) AND

(reveal = heart ^ spade) AND

(h ≥ 1) AND (h ≤ 9) AND (s ≥ 1) AND (s ≤ 9)

Now what do mathematicians do with
equations? They combine them, getting rid
of some of the variables. We can do that one
equation at a time. As we know spade = s
then we can replace spade with s in all the
other equations so that it doesn’t appear any
more. Similarly we can replace heart with h.
Mathematicians write things like a x 2 as 2a so
lets do that here too. We get the simpler set of
equations:

(magic = 10 – s) AND

(total1 = 2h) AND

(total2 = total1 + 2) AND

(total3 = total2 x 5) AND

(friends = total3 – magic) AND

(reveal = h ^ s) AND

(h ≥ 1) AND (h ≤ 9) AND (s ≥ 1) AND (s ≤ 9)

We can do the same, with the next two
equations replacing magic with 10 – s and
total1 with 2h everywhere they appear,
giving:

(total2 = 2h + 2) AND

(total3 = total2 x 5) AND

(friends = total - (10 - s)) AND

(reveal = h ^ s) AND

(h ≥ 1) AND (h ≤ 9) AND (s ≥ 1) AND (s ≤ 9)

Eliminating total2 and total3 gives:

friends = 5(2h + 2) – (10 – s) AND

reveal = h ^ s AND

(h ≥ 1) AND (h ≤ 9) AND (s ≥ 1) AND (s ≤ 9)

Now we can simplify that complicated equation
about friends as follows:

5(2h + 2) – (10 – s) =

5(2h + 2) – 10 + s =

10h + 10 – 10 + s =

10h + s

So we can replace 5(2h + 2) – (10 – s)
with 10h + s and our facts simplify to:

friends = 10h + s AND

reveal = h ^ s AND

h ≥ 1 AND h ≤ 9 AND s ≥ 1 AND s ≤ 9

The Magical Friendship Test:
Maths

Reveal the truth
What number does h ^ s turn in to? When we
put two numbers side by side they become
a 2-digit number – as long as they are just
digits and not bigger numbers. We need our
facts about the possible numbers selected:
h ≥ 1, h ≤ 9, s ≥ 1 and s ≤ 9. That is just a
mathematical way of saying they are non-zero
digits. The trick won’t work if larger numbers
are chosen!

What do we mean by a two-digit number? Just
that one column stands for 10s and the other
for units. In the number 54, the 5 isn’t just 5.
It stands for 50. So saying we have a 2-digit
number just means that the digit in the 10s
column (h) is multiplied by 10 and added to
the units digit (s). We can write this as:

h ^ s = 10h + s.

So, for example, 5^4 (5 placed next to 4) turns
into (10 x 5) + 4 = 54. Using that new fact we
get:

friends = 10h + s AND

reveal = 10h + s

Together they give a single, simple fact that is
true at this point in the trick:

friends = reveal

It says that after we have done all the
calculations the two numbers, friends and
reveal are identical. It is true whatever digits
h and s are!

That is the state of the world before the If
statement is carried out. It does the test:

{ reveal EQUALETH friends }

but EQUALETH just checks if two things are the
same. It is asking whether reveal = friends
is true or not. We just proved it is always true,
so the rune will always do the first instruction,
never the second. We will always execute

& SPEAKETH <~
 “Your friendship will last for ever” &

The fact we will know about the world after the
IF instruction is followed is that

SPEAKETH =
 “Your friendship will last for ever”

We have proved the trick always works using
logical thinking. We have shown that the
friendship number and revealed number will
always be the same and so we will never be
embarrassed. We will always say:

“Your friendship will last for ever”.

The truth about a program
The specification for a medical device program
would be similar. Rather than being about
what a magician says it would be about what
appears on the screen, what lights are lit up
and what sounds are made. We can prove a
program meets its specification just like we did
with the trick.

24 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Queen Mary University of London 25Learn more at www.cs4fn.org/magic/

The Magical Friendship Test:
Design

Human Error
We proved the trick always works. This of
course assumes the magician and volunteers
follow the steps exactly. If the volunteer gets
the calculation wrong or writes down a different
number the trick won’t work whether we have
proved it or not. That is entirely possible as the
previous trick showed. We should make sure
the trick takes account of the possibility.

We want a plan that is better than just saying
the friends will fall out. We could, for example,
add steps to check the calculation has been
done correctly: perhaps have both friends do
the calculation and compare answers, only
writing the final number down when they
agree. Maybe you can come up with a better
way. The real point here is to think about what
could go wrong and build ways to prevent them
happening in to the trick. That way you will
recover if they do.

The same applies to programs. If the user of a
program does something that the programmer
hadn’t thought of, then the program may not
do the right thing. That is why it is really, really
important to program in a way that assumes
people will do the wrong thing. You should also
evaluate for whether something sensible and
safe happens if a user does get it wrong.

For example take medical devices again.
Suppose a nurse or doctor makes a mistake
doing a calculation and enters a number 10
times too big to be safe, or enters a number
that doesn’t make sense like one with two
decimal points. The program ought to be able
to detect that and issue a warning and not
go on until they have corrected the mistake.
Just as with the trick it would be better still to
have a way of preventing the mistake being
made in the first place. It is standard practice
in hospitals for a second nurse to check any
calculation done. Different people, it turns
out often make the same mistakes though
so actually something more is needed. The
programmers need to come up with ways their
programs can help.

The
Acrobatic
Eights

The Acrobatic Eights: Magic
Most people think the Aces do all the best tricks. Here
the eights show themselves to be the acrobats of the
pack by invisibly back flipping tumbling and diving
from one pile to another.

The mechanics
This trick uses one simple bit of secret card
manipulation, turning the pack over. The
routine ensures this easy pack acrobatic is
hidden through audience misdirection.

Going backwards
to the set up
Find the four eights from a pack of cards,
tossing them causally on the table. Explain
they are the pack’s acrobats. Ask a spectator
to shuffle them. While everyone’s attention is
on those eights, take the face down pack and
secretly reverse the bottom half. You will have
plenty of time, as all attention will be on the
shuffling eights. Don’t rush it or look like you
are up to something. Be casual.

With the pack in your hand take the eights
back, face down. Hold these four cards in
the fingertips of the same hand as the pack
and spread them with your other hand. Ask
your spectator to choose one and place it, the
“leader eight”, face down on the table. Close
up the fan of the three eights and put them on
top of the pack. Then, pointing with the index
finger of the hand holding the pack, ask a
spectator to reveal the value of the leader
card in the middle of the table.

Learn more at www.cs4fn.org/magic/

The first hidden twist
This is where you do the first hidden twist.
As you and audience watch the eight being
revealed, place the pack casually aside. As you
table the pack turn it over. Now random cards
from the reversed bottom of the pack are on
top. The three eights are on the bottom.

Immediately move in with both hands to place
the now face up leader eight at “just the right
position” on the table, pretending to flick fluff
from the “performance area”. Don’t take too
long, only enough time to justify having to put
the deck down to use both hands.

Practice turning the pack until you can do
it quickly, casually and without looking
guilty! It helps if you hold the cards lightly
in the bend of you clasped fingers, and as
you rotate your wrist to place the pack on
the table the wrist move also automatically
rotates the pack. The audience will be
misdirected from it anyway as its over to one
side of the table, away from the interesting
stuff of turning the eight over.

Queen Mary University of London 27

The Acrobatic Eights: Magic

A second twist please
Pick up the deck and deal the top three cards
face down in a line in the middle of the table.
These cards, you remind the audience, are the
other three eights (except they aren’t as you
secretly flipped the pack). Keeping the pace
fast so no one checks they are eights, push
off three more cards from the deck and tilt
them up showing their faces, then pop them
face down onto the top of a face down pretend
‘eight’. Do the same for the remaining two
piles. Don’t be tidy, just quick.

Now tidy the three piles of cards. Use the
index finger of the hand containing the deck to
start to square one of the piles. Then ‘realise’
putting the pack aside will be faster. As you
table the pack to one side flip it over again. The
audience are too busy watching the activity in
the centre of the table to see.

Pick up the pack and, as before, push over
three random cards to place on the face
up leader eight. Don’t show their faces this
time: they are the three eights returned from
the bottom to the top of the pack by your
second hidden twist. Because you use the
same actions, thinking back the audience will
assume you showed their faces too, but you
didn’t. They will confuse this similar event with

the three earlier occasions where the faces of
the pushed off cards were deliberately shown.

All the fun of the fair
The trick is over for you before it has even
started for the audience. They think there are
three random cards on top of the leader and
three piles containing eights in a line. Now
have some fun pretending to move the eights
from their piles to the leader pile.

Get the first eight to do a “back-flip”: take the
pile, turn it over and slap it down, spreading
the cards… “Blam, the eight is gone”. Turn
over an eight on the leader pile. It has back-
flipped invisibly over the table to land by the
leader.

Go for a tumble with the next pile. Shuffle it
then flick one end. Turn over the cards to show
the eight has vanished, only to tumble invisibly
into the leader pile when you turn over the
second eight there.

Make the final eight do a high dive. Take the
pile and lift it up, pause for effect, then lift it
higher. Flick the cards then show the faces, the
final eight is gone. Dramatically turn over the
last eight on the leader pile to show the high
dive landed on target. The trick is over.

28 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Queen Mary University of London 29Learn more at www.cs4fn.org/magic/

The Acrobatic Eights: Psychology

The Psychology
of Misdirection
All tricks combine an algorithm with a
presentation. The presentation here is based
on an understanding of psychology. It uses
misdirection. Misdirection is common in magic:
it means your audience pay attention to one
thing while you secretly do another.

People are easily distracted. If a magician
can make you turn away, then obviously you
won’t see what she does behind your back.
Misdirection is more powerful than that though.
Magicians do things that are there to be seen
(like turning the pack) in plain sight of a whole
audience.

What’s going on? There is too much
information coming via your eyes for your
brain to process everything, so it doesn’t try.
You have a focus of attention. It is the area
that your brain is paying attention to. When
you are paying attention to one thing you don’t
actually see other things in your field of view
unless something draws your attention to them.
Your focus of attention can be quite small.
Misdirection makes use of this so people miss
things because their attention is elsewhere.

There are lots of ways to be distracted. Trying
to do several things at once is difficult and one
task can easily distract you from another. Here
everyone is given the new task of seeing what
card is revealed. The person turning the card
has to think about doing it. Pointing is also a
strong external signal that directs the attention
of the audience. It combines with the natural
internal desire to see what the card is. Their
attention can’t be in two places at once and
both internal and external signals are drawing
it away from what matters.

Magicians use their understanding of
psychology to engineer a system so that a
whole audience make the same mistake at
once. Everyone looks away from the place
that matters at the critical time.

The Acrobatic Eights: Psychology

Misdirection in hospital
Hospitals are busy places. Distraction is a part
of the job. Nurses have to do lots of things at
once. It’s not only checking on and caring for
patients themselves. All those machines need
to be monitored too. Alarms go off constantly.
Sometimes they signal an emergency – a
patient having a cardiac arrest, perhaps. Other
alarms just mean a patient has rolled over
in bed and lent on a tube, causing an alarm
to beep in case it is a permanent blockage.
Machines can be pretty rude when alarmed –
like a baby screaming for its mother. Until they
get a nurse’s attention they just keep doing it.
Alarms, emergencies, patients, pagers, other
staff can all misdirect attention just like a
magician’s misdirection.

Engineering Errors In?
Magicians show it is easy to engineer situations
where everyone – hundreds of people – all
make the same mistake at the same time.
They make the mistake even when they are
trying hard not to! Hospitals naturally have
the conditions that a magician carefully
engineers in to their performance. They are a
place where mistakes will be made just as a
theatre controlled by a magician is. You can’t
stop yourself being fooled by a magician, and
similarly no nurse or doctor can guarantee
never to make a mistake, how ever hard they
try. We all only have limited mental resources.

Joe, a busy nurse, sets the last of the
machines that will give a baby life-saving
medicine. He intends to set the dose as written
on the prescription: 123.1 milligrams of the
medicine per hour. Just as he is finishing an
alarm goes off on a machine of another baby.
He hits the start button and rushes to check
on her. Unfortunately he doesn’t notice that
the display showed 1231 not 123.1 mg/hr.
Because of the new emergency he does not
check on the first baby for several minutes.
That baby is given 10 times too much of the
drug in that time. Seeing his mistake he stops
the machine. Luckily this time, he got back
quickly enough.

30 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Queen Mary University of London 31Learn more at www.cs4fn.org/magic/

The Acrobatic Eights:
Computational Thinking

Programming Misdirection
So why should computer scientists care?
Because well-designed machines will help
nurses and doctors avoid mistakes. If
programmers don’t design for this kind of
problem then instead they will cause mistakes
to be made. Psychologists do experiments
to work out what our limits are. Computer
scientists need to use the results when they
write programs.

What happened in our example with the
nurse Joe? When typing in the numbers his
attention was mostly drawn to the keys to find
the right digit, not to the screen. He did look
but decimal points are small and seeing one is
missing is very hard. The position of the start
button at the bottom of the machine drew Joe’s
attention away from the screen not towards it.
Worse just as he was checking, the emergency
alarm took his attention completely away.

Why was the decimal point missing? Well, on
that machine decimal points are only allowed
with numbers less that 100 so the decimal
point was just silently ignored.

Is this all Joe’s fault for “not paying more
attention”? If you think that then when you go
to a magic show you should see through all the
tricks! Whose fault it is should not be the issue,
anyway. What matters is working out how
things can be redesigned so that accidents
waiting to happen don’t happen again. Ideally
you would have more, less busy, nurses. We
can’t reprogram people. The programmers can
do something to help though.

Design mistakes away
Programs can prevent mistakes and also help
a nurse recover when they do make a mistake
– before anything bad has happened.

The machine should not silently ignore key
presses. It should warn the user and not
continue until they have fixed the mistake.
The program can work like a magician in
reverse, drawing the person’s attention to the
right place, rather than the wrong place, by
changing colour or flashing perhaps.

Why does a decimal point have to be so small?
It could be larger.

We could change the way numbers are
entered. Rather than use a digit keypad, we
could have up and down buttons. Then Joe
would just keep his finger on one button to
change the number. His attention would be
on the screen all the time not his fingers.

The machine could check the dose entered
and warn the nurse if dangerous.

Perhaps machines could give fewer false
alarms, so they aren’t constantly drawing the
nurses’ attention away from their main tasks.
If a tube is temporarily blocked but then clears
maybe the program can safely work it out for
itself.

A good designer might have lots more ideas
for improvement. Of course any changes
would need to be tested to make sure they
did work. Otherwise they might just introduce
new problems.

Between the
Two Red
Queens

Between the Two Red Queens: Magic
The red queens are detectives. A volunteer chooses a villain
card, while you deal out some suspect cards to make the
queens’ job more difficult. Spelling out your orders to the
queens, the villain card is mysteriously trapped between them.

The mechanics
Place the two red queens face up on the
table. Have a volunteer secretly remove, and
remember, a card from the pack. Deal 12 other
random cards on top of it, all face down. Place
one red queen face up on the bottom of this
pile, and the other face up on the top.

Next, deal a card from the top of the pack
for each letter of the word BETWEEN, i.e.
deal 7 cards. Drop the remaining cards on
top of those dealt out. Following the same
procedure, spell-deal THE, then TWO, then
RED, and finally QUEENS. Spread the cards
and you will find a single face down card
sandwiched between the face up queens:
the chosen villain card.

All seems sociably sensible
The numbers are hidden by you spelling the
magical commands. The trick could be done
by counting 7 3 3 3 6, or spelling the ‘magic’
words JUMPERS BAT BIT EDS WOOLYS.
There are also lots of other sequences that end
with the villain trapped between the queens.
The ‘magic’ comes from the natural way the
numbers are hidden in a phrase that links to
the story you are telling: BETWEEN THE TWO
RED QUEENS. It makes sense in the context
of the trick, and makes sense socially to your
audience as a way to command the cards to
perform for you. It’s also easy to remember.

Queen Mary University of London 33Learn more at www.cs4fn.org/magic/

Between the Two Red Queens:
Computational Thinking

A hidden algorithm
The movement of the villain card (let’s call it V)
is just an algorithm: with the guaranteed effect
of leaving it trapped between the two queens, Q.

It is a series of steps that move us from the
initial state QVxx xxxx xxxx xxQ to the final
state xxxx xQVQ xxxx xxx. We’ve called all 12
suspect cards x as we don’t care what they are.
The maths means we always get this outcome
if we start in the correct state and carry out the
right steps.

This description of the cards is a mathematical
model. We have hidden the details that don’t
matter (what the other cards are) showing the
positions of the cards that matter – a form of
abstraction.

We can show the trick works using logical
reasoning about the model. Go through the
spell-deal moves and see how the pattern of
card locations in the model changes. Spell-
dealing BETWEEN splits the pack into QVxx
xxxx and xxxx xx Q. It reverses the latter to
Qxxx xxx, then adds QVxx xxxx on the end. It
changes the state from QVx xxx xxx xxx xxQ
to Qxx xxx xQV xxx xxx. Treat each step as an
assignment and prove the trick always works
as for the Magical Friendship Test.

Crank up the magic
As it stands this is quite magical. Spell-dealing
the words traps the villain. We’ve performed
it and it works. But when you try a new trick
with an audience you always see places where

people notice weaknesses in the magic. Those
places, where there is a suspicion of how it
works, could spoil the effect and that wonderful
astonishment you want them to have. All
magicians need this sort of live feedback. Each
time you do a trick, it’s an experiment with a
live audience, and you try to use that
to improve.

In this trick we found the way that the villain
card is placed on the bottom of the suspect
pack is a problem. It’s needed for the trick to
work, but it felt suspicious. After all, the story is
about finding a hidden villain, and that card is
not hidden! It’s firmly placed on the bottom.

Hide the villain
We need the audience to believe it is lost in
the suspects. How? Well, with the villain at the
bottom of the suspect pile you can then use a
technique called a false shuffle to shuffle the
cards while actually keeping the villain where
it needs to be, on the bottom. It works by
physics: friction to be precise. If you press your
fingertips on the bottom (villain card) of the
pile and pull cards from above it with the other
hand then the friction of your fingers against
the bottom card keeps it in place. You can lift
cards from above and move them to the top
like a real shuffle while keeping the villain card
firmly anchored to the bottom of the pile. Try
it and you will see how convincing it is. After a
false shuffle to ‘hide the villain’ the Queens can
be placed and the trick completed.

34 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Queen Mary University of London 35Learn more at www.cs4fn.org/magic/

Between the Two Red Queens:
Computational Thinking

Don’t count your suspects
That improved the trick a lot, but then as we
did it more we realised it was a bad idea to
count out 12 cards. Sometimes the audience
realise that the number matters. We do need
12 suspect cards, but we need it to seem like
we are casually adding suspects, as if the exact
number doesn’t matter. How could we do this?
Well, pushing cards over in blocks of three is
easy to do and looks quite causal. Four blocks
of three gives 12 cards with less suspicion
that the trick is about exact numbers. We tried
this and realised a bit more helped. If we deal
the first three blocks of three, pause and say
‘perhaps a few more’ before pushing off the
final set of three, then it provides a nice socially
distracting cue to the apparent casualness of
the counting.

Playing with words
The false shuffle removes the idea from the
audiences’ mind that the trick is mechanical:
put card here, spell words, card ends up here.
That is exactly how it does work, but we don’t
want it to be obvious. After all, in magic when
you know where the elephant is hidden the
wonder goes! Perhaps we can think of other
ways to throw them off the trail? We could give
them options to choose from. For example, the
words we use involve the final RED QUEENS.

We could let them chose the detective cards to
use. ODD SEVENS or RED EIGHTS work for the
3 6 sequence. How about ODD THREES, or
OLD SWORDS, given the King of Hearts, King
of Spades and King of Clubs pictures’ have
swords. Start the trick by tossing out some
random cards for the audience to choose the
detectives from: Queens, sevens, threes, eights
and Kings.

Experiment – over to you
Experiment. All your variations will work in
the sense of trapping the villain, if they are
based on the mathematical algorithm, but
depending on your presentation and the story
you tell the mechanics and the magic effect
will be modified. Just keep in mind the best
magic is simple and direct. It makes sense to
the audience if they can follow the reasons
for each move as it happens, then when the
impossible happens at the end their bubble
of reality bursts and they are astonished and
entertained.

Between the Two Red Queens:
Computational Thinking

Human-centred
algorithmic thinking
The bare mechanics (the algorithm) of all the
tricks in this book are easy to see through.
It takes good presentation to be magical.
Similarly with a program, developing a brilliant
algorithm isn’t enough. Programs used by
people have to have good interaction design
(i.e., presentation) if they are to be easy and
a delight to use. Computer scientists can use
their experience to suggest designs, and logical
thinking to evaluate them for problems, but
ultimately they must be evaluated with people.
Computer Scientists draw on methods from the
social sciences to do this.

One way to develop a trick is to hide away, only
using it in a magic show once perfected in
private. That’s NOT a good way to do it. Tricks,
and even parts of tricks like false shuffles,
should be tried out as soon as possible. Before
you move to a large audience, try a new trick
on friends, one at a time, to see how well it
works. Modify it based on what is working
magically and what isn’t. Then try out the new
version on someone else. Just in trying it, your
creativity will be sparked and you will think
of new tweaks. When it’s working well, try it
with a bigger audience and then bigger still.
Evaluation with people and development go
hand in hand. None of the tricks in this book
rose out of a dark cellar. They all went through
this human-centred process. The same applies
to programs.

36 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Queen Mary University of London 37Learn more at www.cs4fn.org/magic/

Between the Two Red Queens:
Social Sciences

Useful User Testing
Early in the development process computer
scientists try out their designs on real people,
checking the ideas. Called user testing, it
is done on prototypes long before the full
program is completed. One way, called post-it
note prototyping is used on the earliest design
ideas. You sketch a picture of the design on
paper and use sticky notes for the screen. A
volunteer – the ‘user’ – does a task (like enter
a drug dose for a medical machine). As they
pretend to press buttons doing it, you swap
sticky notes to show what happens on the
screen. You watch and listen as the user says
what they are thinking and what is confusing.
You fix the problems then do more user testing.

A next step is to create a higher-fidelity
prototype. You could do this in Powerpoint
using ‘action buttons’ so when you touch a
button on a picture of a device prototype it
moves to a new slide showing what pressing
the button does. This is a bit more realistic.
Later still early versions of the real program
are user tested until eventually a near-release
version is ‘beta-tested’ on lots of real users.

Problems with the design are then found early
when they are cheap and easy to fix. Good
algorithmic thinking gives good algorithms, but
it takes human-centred algorithmic thinking to
create great programs.

Essential Ethnography
If you want to be a great magician you need to
practice a lot. You also need to watch magic
– see the same tricks being done over and
over. Don’t just watch the magician, watch

the audience too. See what they do and their
expressions as the trick progresses. See
what works and what doesn’t. Watch people
generally too. When do they (and you) make
mistakes? What distracts and what doesn’t?
We noticed a crowd of people were distracted
when we handed one a card while chatting.
From that observation, (and lots of trial and
error) a new trick emerged.

Ethnography is something social scientists
do: they observe people getting on with their
normal lives to understand them better. It’s
a powerful tool for computer scientists too.
Before you develop a program, get out amongst
the intended users (eg in hospitals) and find
out what their lives are like, what problems
they face and how they do things. Immerse
yourself by doing their jobs with them, so you
deeply understand. That way you will be in a
position to design something that they will use
and that will be really useful. Otherwise you
may end up creating a ‘wonderful’ program
that no one ever uses because it just doesn’t
fit the way they do things. Even better you may
notice a problem to solve, seeing something
that nurses are struggling to do say, that your
competitors haven’t even realised is a problem.
That will give you a marketing edge.

Ethnography can be used to develop a set
of personas – very detailed descriptions of
fictional people with names, jobs, feelings,
lives…doctors, nurses, patients, hospital
porters, cleaners,... They are used by the
design team to help them remember the real
people they are designing for. When deciding
if a feature is needed they can ask “Would it
actually help Sue or Joe”.

Perfect Programming for People

Perfect Programming
for People
Magicians practice all the time. To be a good
programmer you must practice too. Write lots
of programs. It is about more than writing
programs though. Just like magic, it’s about
algorithmic thinking, good evaluation, logical
thinking and more. It is about computational
thinking. Just like magic, good programming
is about understanding people too, though.

Also just like magicians, the best computer
scientists draw on other subjects like
Mathematics, Design and the Social Sciences
as well as the artistic, creative side of us all.
That way they can really help people do their
jobs whether they work in Medicine, Transport,
Energy, Finance or … well anything. With
Medicine in particular it means programmers
helping Doctors and Nurses save lives.

If you are interested in learning more about
magic as a hobby a great place to start is the
classic book “Royal Road to Card Magic” by
Jean Hugard and Frederick Braue, published
by Dover.

38 Queen Mary University of London Learn more at www.cs4fn.org/magic/

Queen Mary University of London 39Learn more at www.cs4fn.org/mathemagic/ Queen Mary University of London 39Learn more at www.cs4fn.org/mathemagic/

This is your chosen card

This cs4fn booklet (March 2015) is part of a project
between Queen Mary University of London and Hertford
College Oxford. It was funded by the Department for
Education with additional support provided by Google
and the EPSRC funded CHI+MED project involving UCL,
Swansea and City Universities. It was distributed in London
with support from the Greater London Assembly.

For resources on the fun side of computing, visit
www.cs4fn.org. For courses and resources for teachers,
including classroom activities linked to this booklet, visit
www.teachinglondoncomputing.org a joint project between
Queen Mary University of London and King’s College
London funded by the Greater London Assembly.

